Abstract
Dendritic polymers with highly branching structures exhibit many unique properties. In this paper, a computational study using the Wang-Landau sampling technique is carried out to reveal the phase transition behaviours of dendritic homopolymers with various branching structures. Two types of dendritic homopolymers, dendrimers/dendrigrafts (D/D) and hyperbranched (HB) polymers are studied. It is found that with increasing degree of branching in the dendritic polymer, the liquid-solid (LS) transition temperature increases and the coil-globule (CG) transition becomes weak. Additionally, under similar degrees of branching and polymerization, D/D polymers have a higher LS transition temperature than HB polymers. The reason is that the D/D polymers have greater regularity in the radial distribution of the branching units, which facilitates monomer packing during the LS transition. The distinctive internal unit distribution at various temperatures is quantitatively analysed. Our results show the importance of dendritic polymer structure regularity in phase transition behaviours and are valuable in guiding the structural design of dendritic macromolecules for functionalization applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have