Abstract

Light-mediated self-organization of nanoparticles (NPs) offers a route to study mesoscale electrodynamics interactions in many-body systems. Here we report the phase transition and self-stabilization of dynamic assemblies with up to 101 plasmonic metal NPs in optical fields. The spatial stability of self-organized NPs is strongly influenced by the laser intensity and polarization state, where phase transition occurs when the intensity increases and the polarization changes from linear to circular. Well-organized NP arrays can form in a circularly polarized laser beam, where the center of an array is less susceptible to thermal fluctuations than the edge. Moreover, larger arrays are self-protected from fluctuation-induced instability by incorporating more NP constituents. The dynamics of NP arrays can be understood by electrodynamic simulations coupled with thermal fluctuations and by examining their potential energy surfaces. This study clearly reveals the spatial inhomogeneity of optical binding interactions in a two-dimensional multiparticle system, which is important for building large-scale optical matter assemblies with NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.