Abstract
La 9.75□ 0.25(Ge 6O 24)O 2.62 oxy-apatite shows a phase transition from triclinic to hexagonal symmetry at approximately 1020 K that has been characterised by high-temperature synchrotron X-ray and neutron powder diffraction, and ionic conductivity measurements. The crystal structure at 1073 K has been determined from joint Rietveld refinements of synchrotron X-ray and neutron powder diffraction data. The study shows that hexagonal-La 9.75□ 0.25(Ge 6O 24)O 2.62 contains interstitial oxygen at the position previously reported for other oxy-germanates. Changes in the oxide conductivity associated with this structural transition are discussed. The thermal analyses showed a weight loss on heating close to 600 K very likely due to water release. The synchrotron thermodiffractometric study shows an anomaly in the cell parameters evolution at that temperature, which indicates that this residual water is located into the apatite channels. The electrical characterisation under different atmospheres (dry and wet synthetic air) indicates that there is a significant proton contribution to the overall conductivity below 600 K, mainly under wet atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.