Abstract

Direct, reliable, controlled, and sustained drug delivery to female reproductive tract (FRT) remains elusive, with conventional dosage forms falling way short of the mark, leading to premature leakage, erratic drug delivery, and loss of compliance. Historically, the intravaginal route remains underserved by the pharmaceutical sector. To comprehensively address this, we turned our focus to phase-transforming sol-gels, using poloxamers, a thermosensitive polymer and, doxycycline (as hyclate salt, DOXH) as our model agent given its potential use in sexually transmitted infections (STIs). We further enhanced mucoadhesiveness through screening of differing viscosity grade hydroxypropyl methyl celluloses (HPMCs). The optimised sol-gels remained gelled at body temperature (<37 °C) and were prepared in buffer aligned to vaginal cavity pH and osmolality. Lead formulations were progressed based on their ability to retain key rheological properties, and acidic pH in the presence of simulated vaginal fluid (SVF). From a shelf-life perspective, DOXH stability, gelation temperature (Tsol-gel), and pH to three months (2–8 °C) was attained. In summary, the meticulously engineered, phase-transforming sol-gels provided sustained mucoretention despite dilution by vaginal fluid, paving the way for localised antimicrobial drug delivery at concentrations that potentially far exceed the minimum inhibitory concentration (MIC) for target STI-causing bacteria of the FRT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call