Abstract

Nanosize Li 2WO 4 is successfully synthesized using a mechanical milling method. The mean particle size of milled Li 2WO 4 is 37 nm and 31 nm as measured by Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) analysis, respectively. The calculated lattice parameter of as-received and milled powder are 0.8326 and 0.8321 nm, respectively. Both powders have been hydrated at room temperature and are highly crystalline with the presence of different types of phases at varying sintering temperatures. There is no Li 2W 2O 7 (JCPDS 28-0598) phase present in the milled powder during the whole sintering process. Meanwhile, the thermogravimetric analysis (TGA) of both powders is in accordance with their phase changes as presented in the XRD spectra. The impedance measurements show that the milled powder has a lower conductivity than that of the as-received powder in overall. The conductivity of the as-received powder increases with sintering temperature but this phenomenon is vice versa for the milled powder. All these trends can be correlated with the Field Emission Scanning Electron Microscopy (FE-SEM) micrographs on both powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call