Abstract
Chaotically-spiking dynamics of Hindmarsh–Rose neurons are discussed based on a flexible definition of phase for chaotic flow. The phase synchronization of two coupled chaotic neurons is in fact the spike synchronization. As a multiple time-scale model, the coupled HR neurons have quite different behaviors from the Rössler oscillators only having single time-scale mechanism. Using such a multiple time-scale model, the phase function can detect synchronization dynamics that cannot be distinguished by cross-correlation. Moreover, simulation results show that the Lyapunov exponents cannot be used as a definite criterion for the occurrence of chaotic phase synchronization for such a system. Evaluation of the phase function shows its utility in analyzing nonlinear neural systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.