Abstract

We theoretically investigate the collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker–Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase synchronization. We show that the macroscopic rhythms can exhibit effective antiphase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker–Planck equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.