Abstract

We formulate a theory for the collective phase description of globally coupled noisy limit-cycle oscillators exhibiting macroscopic rhythms. Collective phase equations describing such macroscopic rhythms are derived by means of a two-step phase reduction. The collective phase sensitivity and collective phase coupling functions, which quantitatively characterize the macroscopic rhythms, are illustrated using three representative models of limit-cycle oscillators. As an important result of the theory, we demonstrate noise-induced anti-phase synchronization between macroscopic rhythms by direct numerical simulations of the three models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.