Abstract

The various methods of synthesis of iron oxide nanoparticles (IONPs) have been extensively studied in several works of literature. These methods include physical, chemical, and biological nanosynthesis methods with applications in water filtration, environmental remediation, plant improvements, biomedicines, etc. These nanosynthesis approaches revolve around their mode of application, nanomaterial properties, and characterization mechanisms, while little effort has been made to investigate the effect of nanosynthesis parameters based on phase transformation and growth mechanisms of such IONPs. The parameters, which are physical, chemical, mechanical, mineralogical, and morphological, have proven to have tremendous implications on the magnetic behaviors, crystalline size, degree of crystallinity, lattice stain, and mechanical strength of the synthesized IONPs. Thus, this paper gives an overview of the effect of selected nanosynthesis parameters, potential mechanisms of the phase transformation, nanomaterial characterization, and growth mechanism of IONPs produced via the mechanochemical route. The study also suggests future perspectives on the need for further study on the reduction-oxidation process, reaction kinetics, and growth mechanism as influencing factors that can affect the phase structure transformation and alteration of magnetic properties of mechanochemically synthesized IONPs at various levels for suitability in nanotechnology advancement and applications in various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.