Abstract

We have used the ab initio random structure searching method together with density functional theory calculations to find stable structures of strontium under pressures up to 50 GPa. We predict a sequence of structural phase transitions and the stability of an orthorhombic structure of Cmcm symmetry above 25 GPa. Our energy, lattice dynamics, and molecular dynamics calculations confirm the stability of the Cmcm structure. The electron-phonon coupling calculations show that superconductivity arises in the bcc structure of compressed Sr and that it continues to exist in the Cmcm structure. The calculated superconducting transition temperatures are in good agreement with experiment. Our study gives an excellent account of the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.