Abstract
A reduced four-dimensional (integrated over perpendicular velocity) gyrokinetic model of slab ion temperature gradient-driven turbulence is used to study the phase-space scales of free energy dissipation in a turbulent kinetic system over a broad range of background gradients and collision frequencies. Parallel velocity is expressed in terms of Hermite polynomials, allowing for a detailed study of the scales of free energy dynamics over the four-dimensional phase space. A fully spectral code – the DNA code – that solves this system is described. Hermite free energy spectra are significantly steeper than would be expected linearly, causing collisional dissipation to peak at large scales in velocity space even for arbitrarily small collisionality. A key cause of the steep Hermite spectra is acritical balance– an equilibration of the parallel streaming time and the nonlinear correlation time – that extends to high Hermite numbern. Although dissipation always peaks at large scales in all phase space dimensions, small-scale dissipation becomes important in an integrated sense when collisionality is low enough and/or nonlinear energy transfer is strong enough. Toroidal full-gyrokinetic simulations using theGenecode are used to verify results from the reduced model. Collision frequencies typically found in present-day experiments correspond to turbulence regimes slightly favoring large-scale dissipation, while turbulence in low-collisionality systems like ITER and space and astrophysical plasmas is expected to rely increasingly on small-scale dissipation mechanisms. This work is expected to inform gyrokinetic reduced modeling efforts like Large Eddy Simulation and gyrofluid techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have