Abstract

In phase measurement systems that use phase shifting techniques, phase errors that are due to nonsinusoidal waveforms can be minimized by applying synchronous phase shifting algorithms with more than four samples. However, when the phase shift calibration is inaccurate, these algorithms cannot eliminate the effects of nonsinusoidal characteristics. It is shown that, when a number of samples beyond one period of a waveform such as a fringe pattern are taken, phase errors that are due to the harmonic components of the waveform can be eliminated, even when there exists a constant error in the phase shift interval. A general procedure for constructing phase shifting algorithms that eliminate these errors is derived. It is shown that 2j + 3 samples are necessary for the elimination of the effects of higher harmonic components up to the jth order. As examples, three algorithms are derived, in which the effects of harmonic components of low orders can be eliminated in the presence of a constant error in the phase shift interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.