Abstract
This paper derives and graphically illustrates the performance characteristics of Phase-Shift-Keyed communication systems where the receiver's phase reference is noisy and derived from the observed waveform by means of a narrow-band tracking filter (a phase-locked loop). In particular, two phase measurement methods are considered. One method requires the transmission of an auxiliary carrier (in practice, this signal is usually referred to as the sync subcarrier). This carrier is tracked at the receiver by means of a phase-locked loop, and the output of this loop is used as a reference signal for performing a coherent detection. The second method is self-synchronizing in that the reference signal is derived from the modulated data signal by means of a squaring-loop. The statistics (and their properties) of the differenced-correlator outputs are derived and graphically illustrated as a function of the signal-to-noise ratio existing in the tracking filter's loop bandwidth and the signal-to-noise ratio in the data channel. Conclusions of these results as well as design trends are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.