Abstract

Here we show that thermodynamic instabilities during electrospinning of polymer blends of poly(ethyl cyanoacrylate) (PECA) and polycaprolactone (PCL) in a ternary solvent system (acetone/chloroform/acetonitrile) induce the formation of hierarchical composite fibres with dual porosity. The analysis of the surface and cross-section of the PECA-PCL fibres reveals that, differently from previous works, the electrospun fibres are formed of two distinct morphologies: half of the fibre exhibits parallel and elongated grooves; whereas the other half has near-circular shaped pores. Porosity is present throughout the fibre volume with some regions being hollow. The occurrence of this novel architecture is investigated using different solvent systems and a dual phase separation mechanism is proposed. Porous fibres with a hierarchical porous structure are beneficial in many fields, including biomedical, environmental and energy related applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.