Abstract
A linear theory of two-photon amplification by three-level atoms in the cascade configuration is developed, where a coherence is induced between the top and bottom levels, by an external classical driving field. It is shown that this system becomes an ideal parametric amplifier for sufficiently strong driving field, whereas for a weak driving field it is a phase-insensitive amplifier. In between these two extremes, one finds phase-sensitive amplification as well as squeezing for a certain range. The system does not, however, reduce to a model studied previously where the atomic coherence was treated as an initial condition. The system is also studied in a cavity configuration: It is predicted that the oscillator may behave as a two-photon correlated emission laser, i.e., its phase diffusion coefficient vanishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. A, Atomic, molecular, and optical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.