Abstract

Light, elementary and soft linear logics are formal systems derived from Linear Logic, enjoying remarkable normalization properties. In this paper, we prove decidability of Elementary Affine Logic, EAL . The result is obtained by semantical means, first defining a class of phase models for EAL and then proving soundness and (strong) completeness, following Okada's technique. Phase models for Light Affine Logic and Soft Linear Logic are also defined and shown complete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.