Abstract

Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to <80 nm×130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asymmetric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin wave manipulation in magnonic crystals.

Highlights

  • While challenging to handle, this particular complexity offers unique possibilities to influence and observe spin waves on the scale of their own wavelength.[2]

  • Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation

  • Micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry

Read more

Summary

Introduction

This particular complexity offers unique possibilities to influence and observe spin waves on the scale of their own wavelength.[2]. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call