Abstract
Phase-noise analysis of the self-injection-locked oscillator is presented in this paper. The analysis is developed for different oscillator models and arbitrary self-injection feedback loops. The results are illustrated with specific cases of simple time-delay cable and a high-Q factor resonator. It is shown that the behavior of the phase noise is similar to an oscillator locked to an external low phase-noise source. The output phase noise can be reduced at the noise offset frequency near the carrier frequency, and returning to the free-running oscillator noise far from the carrier frequency for certain stable feedback delay ranges. The phase-noise reduction is affected by the self-injection signal strength and feedback transfer function for different oscillator equivalent-circuit models. The theory is verified by using a self-injection-locked GaAs MESFET oscillator operating at the X-band with delay cable loops. The self-injection-locked technique may be used to improve the phase noise of the existing oscillators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have