Abstract

One of the significant challenges in monitoring the quality of products today is the high dimensionality of quality characteristics. In this paper, we address Phase I analysis of high-dimensional processes with individual observations when the available number of samples collected over time is limited. Using a new charting statistic, we propose a robust procedure for parameter estimation in Phase I. This robust procedure is efficient in parameter estimation in the presence of outliers or contamination in the data. A consistent estimator is proposed for parameter estimation and a finite sample correction coefficient is derived and evaluated through simulation. We assess the statistical performance of the proposed method in Phase I. This assessment is carried out in the absence and presence of outliers. We show that, in both cases, the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Besides, we present two real-world examples to illustrate the applicability of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.