Abstract

Zirconium silicate ceramics is widely used in different fields of engineering. One of the most actual problem of zircon ceramics is the requiring of high temperatures for its sintering. Perspective method for activation of silicate materials with the aim of intensification of synthesis and sintering processes is the low-temperature fluoridation with the ammonium hydrofluoride. In accordance with that, processes occurring during the interaction of plasma dissociated zircon and natural zircon with ammonium hydrodifluoride were studied. It was established that plasma dissociated zircon actively interacts with ammonium hydrofluoride in the solid phase. Natural zircon because of its chemical inertness reacts with ammonium hydrofluoride only when latter melts. The main product of fluorinating is ammonium hexafluorosilicate. By-products are ammonium hexafluorozirconate and ammonium heptafluorozirconate. Their quantity increases with the content of ammonium hydrofluoride in mixtures. Kinetic equation of reaction between zircon and ammonium hydrofluoride is k×τ = 1-(1-α)1/n. Activation energy of plasma dissociated zircon and natural zircon fluorinating reactions are 13.9 and 32.7 kJ/mol, respectively. Order of reactions (n) are 2.0 and 1.5, respectively. Thermal treatment of fluorinated materials at 400 °C leads to ammonium hexafluorosilicate sublimation and thermal dissociation of ammonium fluorozirconates to zirconium fluoride and fluorozirconate intermediates. It was established that low-temperature fluoridation of zircon makes possible to regulate chemical composition of minerals. Materials obtained by ammonium hydrofluoride treatment of plasma dissociated and natural zircon can be potentialy used in the functional zircon and zirconia-zircon ceramics technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.