Abstract

Crystallographic texturing enables the design of piezoelectric polycrystals that outperform traditional random polycrystals by exhibiting outstanding piezoelectric properties. In this work, phase-field modeling and computer simulation were employed to study the effect of crystallographic texture on the piezoelectric properties of ferroelectric polycrystals at the domain level. Domain evolutions for single crystal, random polycrystal, and textured polycrystal are systematically simulated. The simulations reveal that the [001]-textured polycrystal can fully exploit the intrinsic anisotropic properties of piezoelectric materials by exhibiting a piezoelectric coefficient that is as large as that of single crystal while being much larger than that of random polycrystal. To better understand the mechanism of piezoelectricity enhancement by crystallographic texturing, a theoretical analysis based on Landau theory is provided. In comparison with random polycrystal, the textured polycrystal manifests a flatter energy landscape and thus possesses a higher piezoelectric coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call