Abstract

A phase-field simulation is performed to examine the effect of elastic inhomogeneity between the  and ’ phases on coarsening of the ’ phase in Ni-based superalloys. In the calculation of elastic strain energy, the mechanical equilibrium equation in elastically inhomogeneous system is solved by an iterative-perturbation scheme. On the basis of the elastic constants of a practical Ni-based superalloy, a series of simulations is performed in which both elastic anisotropy and shear modulus are varied independently. The variation of elastic anisotropy gives significant effect on both morphology and size distribution function of the ’ particles, whereas the variation of shear modulus gives little effect on them. Furthermore, it is found that the coarsening rate constant of the cubic growth raw changes and increases with increasing the standard deviation of the ’ size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.