Abstract

In this paper, we present a phase-field method for Rayleigh instability on a fibre. Unlike a liquid column, the evolutionary dynamics of a liquid layer on a fibre depends on the boundary condition at the solid-liquid interface. We use a Navier–Stokes–Cahn–Hilliard system to model axisymmetric immiscible and incompressible two-phase flow with surface tension on a fibre. We solve the Navier–Stokes equation using a projection method and the Cahn–Hilliard equation using a nonlinearly stable splitting method. We present computational experiments with various thicknesses of liquid thread and fibre. The numerical results indicate that the size of the satellite droplet decreases as the thicknesses of the thread and fibre increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.