Abstract

This paper provides a comprehensive numerical analysis of daughter crack localization in pure antiplane shear. Although antiplane shear fracture is important in various industrial applications, understanding the morphology of the resulting fragmentation remains challenging. The paper develops innovative phase-field models to induce the facets using a small spatial variation in the toughness field and examines the impact of numerical and material parameters on the newly formed daughter cracks’ shape and spacing. Through meticulous comparison to the coupled criterion, the paper reveals a compelling connection between the internal length-scale of damage regularization, Irwin’s length and the facet crack spacing. Furthermore, the effect of Poisson’s ratio on the crack form and spacing is investigated: the results reveal a significant influence and showcase comparable initiation distances between the numerical simulations and experimental measurements in pure antiplane loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call