Abstract
The phase-field approach regularizes the variational theory of fracture by approximating cracks with a smeared damage field. In this work, the attention is focused on those formulations approximating mode II fractures (shear fractures). In these models, only the deviatoric part of the strain elastic energy, penalized by the phase-field, drives the crack onset and evolution, whereas the elastic hydrostatic energetic contribution has no influence on the failure process. Consequently, cracks evolves according to the von Mises–Hencky–Hüber, also known as J2, failure criterion. Unfortunately, volumetric locking problem arises in the damaged zones if classical numerical solution strategies are adopted. As a consequence, damage localization bands appear with an excessive thickness, thus overestimating the fracture energy. In addition, the crack path geometry may be erroneously described because of the loss of precision of the displacement field in damaged zones. To circumvent these drawbacks, two numerical techniques are proposed, namely selective reduced integration and mixed displacement/pressure formulation, and their effectiveness evidenced by a numerical investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.