Abstract
The phase field crystal (PFC) model is used to simulate the premelting dislocation movement of the symmetric tilt grain boundary (STGB) under strain action when the system temperature is at far from the melting point and close to the melting point, respectively. The results show a local premelting occurs surrounding the dislocations as the premelting temperature is approached to from below temperature. The premelting dislocations of the STGB can glide under strain action, and the premelting region is a companion for dislocation gliding. The process of STGB decay is very similar at the two high temperature conditions. As premelting presents, it diminishes the gliding resistance for the dislocations and leads to a faster movement of dislocations, and also brings about more energy reduction of the system during the decay process of STGB. In spite of applying strain to these premelting samples in whole decay processes of STGB, the premelting dislocation region does not obviously develop and extend. This indicates that the external strain action does not promote the premelting at the high temperature, and cannot induce more premelting dislocation, which can be owed to the premelting phase around the dislocation exhibit fluid-like properties and to the premelting dislocation easily gliding and relaxing the strain energy; this is in agreement with the results of experiments and molecular dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.