Abstract

Structural kinetics in crystalline solids is driven heterogeneously at an atomic level by localized defects, which in turn drive mesoscopic and macroscopic phenomena such as structural phase transformation, fracture, and other forms of plastic flows. A complete description of such processes therefore requires a multiscale approach. Existing modeling methods typically operate exclusively either on an atomic scale or on a mesoscopic scale and macroscopic scale. Phase-field-crystal model, on the other hand, provides a framework that combines atomic length scale and mesoacpoic/diffusive time scale, with the potential reaching a mesoacpoic length through systemic multiscale expansion method. In order to study the dislocation movement under shear strain, the free energy density functional including the exerting shear force term is constructed and also the phase field crystal model for system of shear stain is established. The climb and glide of single dislocation in two-grain system are simulated, and the glide velocity of dislocation and the Peierls potential for dislocation gliding are calculated. The results show that the energy curve changing with time are monotonically smooth under a greater shear strain rate, which corresponds to dislocation movement at a constant speed, which is of rigorous characteristic; while under less shear strain rate, the energy change curve of system presents a periodic wave feature and the dislocation movement in the style of periodic “jerky” for gliding with the stick-slip characteristic. There is a critical potential for dislocation starting movement. The Peierls potential wall for climbing movement is many times as high as that for gliding movement. The results in these simulations are in a good agreement with the experimental ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.