Abstract

We extend the phase field model of heterogeneous crystal nucleation developed recently [L. Gr\'an\'asy et al., Phys. Rev. Lett. 98, 035703 (2007)] to binary alloys. Three approaches are considered to incorporate foreign walls of tunable wetting properties into phase field simulations: a continuum realization of the classical spherical cap model (called model A herein), a nonclassical approach (model B) that leads to ordering of the liquid at the wall and to the appearance of a surface spinodal, and a nonclassical model (model C) that allows for the appearance of local states at the wall that are accessible in the bulk phases only via thermal fluctuations. We illustrate the potential of the presented phase field methods for describing complex polycrystalline solidification morphologies including the shish-kebab structure, columnar to equiaxed transition, and front-particle interaction in binary alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.