Abstract

The article describes a study on the identification of possible phase equilibria in mutual geometrical images of five-component system of water and salt from sulfates, bicarbonates, potassium and calcium fluoride at 25 °C, followed by the construction of its phase diagram complex. Knowledge of the laws governing the structure of the phase complex of this system is necessary not only to obtain new scientific data as reference material, but also to contribute to the creation of optimal conditions for the utilization of liquid wastes of aluminum industrial production containing the system of salts that make up this system. To solve the problem, we used the translation method, which is based on the position according to which the dimension of the geometric images of the diagram of the original (private) system increases by one by adding a subsequent component, due to its concentration, i.e. are transformed. Since the investigated five-component system consists of five particular four-component systems, the addition of the fifth component to any of them is accompanied by transformations of the geometric images of all five four-component systems. Transformed geometric images according to their topological properties are broadcasted to the level of a five-component composition. At the level of the five-component composition, the transformed geometric images, in accordance with the Gibbs phase rule, intersect each other forming geometric images of a given level of componentness. Investigation of phase equilibria five-component water-salt reciprocal system of sulfates, bicarbonates, potassium and calcium fluorides and construction of its phase diagram with complex translation method (at 0°C) showed that it is characterized by fifteen divariant fields, thirteen monovariant curves, and four invariant points. On the basis of the obtained data, the complete closed phase diagram of the investigated system was constructed for the first time and, for the convenience of its reading, it is fragmented by the regions of divariant equilibria.Forcitation:Jabborov I., Soliev L., Nizomov I., Musodzonova J. Phase equilibria in system K,Са//SO4,HCO3,F-H2O at 25 °C. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 3. P. 26-30

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call