Abstract

Mg-Sr alloys are promising to fabricate orthopedic implants. The alloying of rare earth elements such as Gd may improve the comprehensive mechanical properties of Mg-Sr alloys. The information on the phase diagram and the microstructure development are required to design chemical composition and microstructure of Gd alloyed Mg-Sr alloys. The phase equilibria and the microstructure development in Mg-rich Mg-Gd-Sr alloys (Gd, Sr < 30 at. %) are experimentally investigated via phase identification, chemical analysis, and microstructure observation with respect to the annealed ternary alloys. The onset temperatures of liquid formation are measured by differential scanning calorimetry. A thermodynamic database of the Mg-rich Mg–Gd–Sr ternary system is developed for the first time via CALPHAD (CALculation of PHAse Diagram) approach assisted by First-Principles calculations. The thermodynamic calculations with the developed database enable a well reproduction of the experimental findings and the physical-metallurgical understanding of the microstructure formation in solidification and annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.