Abstract
We report on the electronic and magnetic properties of a series of [m EuNiO3/p LaNiO3] superlattices (thickness m and/or p = 1 unit cell) epitaxially grown on single crystalline NdGaO3 substrates. The structural symmetry of these films has been investigated by the combination of in-situ reflection high energy electron diffraction and X-ray diffraction measurements. The metal-insulator transition and the magnetic transition temperatures of the short-period superlattices with m ≥ p are modified from the corresponding bulk Eu1–xLaxNiO3 (x=pm+p) composition. In contrast to the corresponding bulk doped compound with x = 0.67, the [1 EuNiO3/2 LaNiO3] film remains metallic down to at least 2 K without signs of electronic or magnetic transitions. These findings demonstrate the power of the digital synthesis approach to realize electronic and magnetic phases of perovskite nickelates, unattainable in bulk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.