Abstract
Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO2-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO2 single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO2 SAAO electrocatalyst exhibits a low overpotential of 192mV and superb stability over 650h at 10mA cm-2, enabling a practical PEMWE that needs only 1.59V to reach 1.0 A cm-2 under industrial conditions. Operando differential electrochemical mass spectroscopy analysis, coupled with density functional theory studies, confirmed the adsorbate-evolving mechanism on Bi-RuO2 SAAO and that the incorporation of Bi1 improves the activity by electronic density optimization and the stability by hindering surface Ru demetallation. This work not only introduces a new strategy to fabricate high-performance electrocatalysts at atomic-level, but also demonstrates their potential use in industrial electrolyzers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have