Abstract

Based on the Ishibashi and Fukui crossroad traffic flow model [Y. Ishibashi and M. Fukui. J. Phys. Soc. Japan. 70 (2001) 2793], mixed traffic flow (i.e., the fast and slow vehicles with different maximum velocities are mixed) is investigated in this work. According to the numerical simulation results and the principle for constructing the phase diagram, phase diagrams for mixed traffic flow are constructed. It is noted that the topology of these phase diagrams is similar to that of phase diagrams for homogeneous vehicles (which refers to slow vehicles only). From the phase diagrams, it is evident that mixed traffic flow is influenced by the mixing rate f (fraction of slow and fast vehicles) in regions II and V, but not in other regions. Although a mixture of fast and slow vehicles is introduced in the crossroad traffic flow model, the separation between phases in the phase diagrams remains linear. For a given q (the vehicle density on the northbound road), one flow plateau appears in regions IIx or IVy, while two maximum flow plateaus appear in region V in each of the phase diagrams. The maximum flow values in region V reflect the maximum traffic capacity for the traffic system as defined in this work. Since mixed traffic flow is a common phenomenon in real traffic, this work may offer help in real traffic simulations and traffic management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call