Abstract
In this work, we theoretically investigate the conditions favoring the interfacial self-assembly of PbSe nanocrystals (NCs) resulting in silicene-honeycomb superstructures. Using a coarse-grained molecular dynamics model, we study the NCs' self-assembly at the dispersion-air interface with respect to the input parameters regulating the various forces experienced by the NCs at the interface. From these results, we extrapolate detailed assembled-phase diagrams showing which ranges of the input parameters promote the formation of silicene-honeycomb superstructures and which regimes result in square geometries. Then, we use a sharp-interface numerical model to compute the energy landscape experienced by each NC at the dispersion-air interface with respect to the NC's surface chemistry. From such an energy landscape, we fit the parameters regulating the interface-adsorption forces experienced by the NCs at the interface. Combining these findings with the results presented in our assembled-phase diagrams, we find out which surface-chemistry properties of the NCs better promote the interfacial self-assembly in silicene-honeycomb superstructures, and we speculate on some experimental strategies to reach an improved control on the synthesis of PbSe silicene-honeycomb superstructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.