Abstract

In this work, we report the effects on CdSe nanocrystal (NC) surface chemistry of acetone and methanol when used as the antisolvents for NC washing and as the solvents for ligand exchange of NC solids with ammonium thiocyanate (NH4SCN). We find that NCs washed with methanol have significantly fewer remaining organic ligands and lower photoluminescence quantum yield than those washed with acetone. When used as the ligand exchange solvent, methanol leaves more organic ligands and introduces fewer bound thiocyanates on the NC surface than when acetone is used. We demonstrate the effect of these different surface chemistries on NC solid optoelectronic properties through photoconductivity measurements, showing a greater photocurrent in NC solids with greater organic ligand coverage. We also show that NC washing with methanol or ligand exchange with NH4SCN in methanol removes a significant number of surface Cd atoms from the NCs, creating Cd vacancies that act as traps for recombination. Independent of the wash and exchange process, the NC surface may be repaired by introducing CdCl2 to the NC surface, enhancing the measured photocurrent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.