Abstract

ABSTRACT Phase diagrams of fully ionized binary ionic mixtures are considered within the framework of the linear mixing formalism taking into account recent advances in understanding quantum one-component plasma thermodynamics. We have followed a transformation of azeotropic phase diagrams into peritectic and eutectic types with increase of the charge ratio. For solid 12C/16O and 16O/20Ne mixtures, we have found extensive miscibility gaps. Their appearance seems to be a robust feature of the theory. The gaps evolve naturally into two-solid regions of eutectic phase diagrams at higher Z2/Z1. They do not depend on thermodynamic fit extensions beyond their applicability limits. The gaps are sensitive to binary mixture composition and physics, being strongly different for C/O and O/Ne mixtures and for the three variants of corrections to linear-mixing solid-state energies available in the literature. When matter cools to its miscibility gap temperature, the exsolution process takes place. It results in a separation of heavier and lighter solid solutions. This may represent a significant reservoir of gravitational energy and should be included in future white dwarf (WD) cooling simulations. Ion quantum effects mostly resulted in moderate modifications; however, for certain Z2/Z1, these effects can produce qualitative restructuring of the phase diagram. This may be important for the model with 22Ne distillation in cooling C/O/Ne WD proposed as a solution for the ultramassive WD cooling anomaly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call