Abstract

Evolutionary prisoner's dilemma games are studied with players located on square lattice and random regular graph defining four neighbors for each one. The players follow one of the three strategies: tit-for-tat, unconditional cooperation, and defection. The simplified payoff matrix is characterized by two parameters: the temptation b to choose defection and the cost c of inspection reducing the income of tit-for-tat. The strategy imitation from one of the neighbors is controlled by pairwise comparison at a fixed level of noise. Using Monte Carlo simulations and the extended versions of pair approximation we have evaluated the b-c phase diagrams indicating a rich plethora of phase transitions between stationary coexistence, absorbing, and oscillatory states, including continuous and discontinuous phase transitions. By reasonable costs the tit-for-tat strategy prevents extinction of cooperators across the whole span of b determining the prisoner's dilemma game, irrespective of the connectivity structure. We also demonstrate that the system can exhibit a repetitive succession of oscillatory and stationary states upon changing a single payoff value, which highlights the remarkable sensitivity of cyclical interactions on the parameters that define the strength of dominance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.