Abstract

We use a density-matrix renormalization group method to study quantitatively the phase diagram of the half-filled one-dimensional (1D) extended Hubbard model in the presence of a staggered ionic potential Δ. An extensive finite-size scaling analysis is carried out on the relevant structure factors and localization operator to characterize the Mott-insulator (MI)-bond-ordered insulator (BOI)-band-insulator (BI) transitions. The intermediate BOI phase occupies a small region of the phase diagram, and this region is enlarged in the presence of Δ. In addition, the phase diagram of ionic Hubbard (the nearest-neighbor electron-electron interaction V=0) is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.