Abstract

The Hubbard-Holstein model is one of the simplest to incorporate both electron-electron and electron-phonon interactions. In one dimension at half filling, the Holstein electron-phonon coupling promotes on-site pairs of electrons and a Peierls charge-density wave, while the Hubbard on-site Coulomb repulsion $U$ promotes antiferromagnetic correlations and a Mott insulating state. Recent numerical studies have found a possible third intermediate phase between Peierls and Mott states. From direct calculations of charge and spin susceptibilities, we show that (i) as the electron-phonon coupling is increased, first a spin gap opens, followed by the Peierls transition. Between these two transitions, the metallic intermediate phase has a spin gap, no charge gap, and properties similar to the negative-$U$ Hubbard model. (ii) The transitions between Mott/intermediate and intermediate/Peierls states are of the Kosterlitz-Thouless form. (iii) For larger $U$, the two transitions merge at a tricritical point into a single first-order Mott/Peierls transition. In addition, we show that an intermediate phase also occurs in the quarter-filled model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.