Abstract

We investigate the thermodynamic stability of quantized vortices in a dilute Bose gas confined by a rotating harmonic trap at finite temperature. Interatomic forces play a crucial role in characterizing the resulting phase diagram, especially in the large $N$ Thomas-Fermi regime. We show that the critical temperature for the creation of stable vortices exhibits a maximum as a function of the frequency of the rotating trap and that the corresponding transition is associated with a discontinuity in the number of atoms in the condensate. Possible strategies for approaching the vortical region are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.