Abstract
Cellulose is a promising renewable and biocompatible biopolymer for stabilizing Pickering emulsions (PEs). In the present study, PEs were produced by low-frequency ultrasounds with cellulose nanocrystals (CNCs) and caprylic/capric triglycerides. Phase diagrams allowed to understand mechanisms of formation and long-term stabilization of PEs. Emulsion type, continuous phase viscosity, and yield of oil incorporation were studied after PEs formation. Droplet size, oil release, and stability were measured weekly up to 56 days of storage. Results showed that oil mass fraction above 70% w/w led to unstable W/O PEs. Lower oil mass fraction formed O/W PEs of stability depending on CNC content and oil mass fraction. Droplet size stability increased with CNCs/oil ratio. A very low CNCs/oil ratio led to phase separation and oil release. High CNC content stabilized oil droplets surface, increased aqueous phase viscosity, and prevented creaming. Highly stable PEs were produced for CNC content above 3% (w/w) and oil mass fraction below 50% (w/w). Mechanisms for PEs formation and stabilization were proposed for various CNC contents and oil mass fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.