Abstract
The effect of androsterol, whose structure resembles that of cholesterol but without the alkyl side chain, on the phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine has been studied to understand the role of the side chain played in the formation of ordered phases of the type observed in membrane rafts. Thermotropic changes in the structure of mixed dispersions and transition enthalpies have been examined by synchrotron X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. From these results a partial phase diagram of the binary system has been constructed. The three-phase line is determined to be 34.5 degrees C, which is 3-5 degrees C lower than that observed in binary mixtures of cholesterol, ergosterol, or stigmasterol with dipalmitoylphosphatidylcholine. The proportions of androsterol in mixtures representing the "left end point" and "right end point" of the three-phase line are 11.1 and 30.9 mol %, respectively. These proportions are greater than that seen in phase diagrams of other sterols codispersed with dipalmitoylphosphatidylcholine. We conclude that androsterol is less effective in promoting the formation of an ordered phase, and furthermore, this ordered phase is less compact than the normal lamellar liquid-ordered phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.