Abstract

The phase behavior of a binary symmetric fluid in thermal equilibrium with a porous matrix has been studied with the optimized random phase approximation and grand canonical Monte Carlo simulations. Depending on the matrix properties and the matrix-fluid and fluid-fluid interactions we find three types of phase diagram characterized by a tricritical point, a tricritical point with a triple point, or a critical end point. Small changes in the properties of the matrix or in the interactions are demonstrated to lead to drastic modifications of the phase diagram of the fluid, in qualitative agreement with observations in experimental studies. We show, in particular, that the change between the different types of phase diagram is triggered not only by the fluid-fluid interactions (internal parameters) but also by the properties of the matrix and of the matrix-fluid potentials (external parameters).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.