Abstract
We study the effects of bond and site disorder in the classical $J_{1}$-$J_{2}$ Heisenberg model on a square lattice in the order-by-disorder frustrated regime $2J_{2}>\left|J_{1}\right|$. Combining symmetry arguments, numerical energy minimization and large scale Monte Carlo simulations, we establish that the finite temperature Ising-like transition of the clean system is destroyed in the presence of any finite concentration of impurities. We explain this finding via a random-field mechanism which generically emerges in systems where disorder locally breaks the same real-space symmetry spontaneously globally broken by the associated order parameter. We also determine that the phase replacing the clean one is a paramagnet polarized in the nematic glass order with non-trivial magnetic response. This is because disorder also induces non-collinear spin-vortex-crystal order and produces a conjugated transverse dipolar random field. As a result of these many competing effects, the associated magnetic susceptibilities are non-monotonic functions of the temperature. As a further application of our methods, we show the generation of random axes in other frustrated magnets with broken SU(2) symmetry. We also discuss the generality of our findings and their relevance to experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.