Abstract

Resonant holographic interferometry is a diagnostic technique based on the dispersion of light having a frequency close to that of an electronic transition of a molecule. We propose a novel single-laser, two-color setup for the recording of resonant holograms and apply it to two-dimensional (2D) species concentration measurements in a combustion environment. The generation of the second color is achieved by optical phase conjugation from stimulated Brillouin scattering in a cell. The frequency shift of ~8.5 GHz introduced by the phase conjugation matches approximately the linewidth of many molecular transitions at typical flame temperatures and can be implemented to produce holograms of good contrast and diffraction efficiency. Phase-conjugate resonant holographic interferometry is demonstrated in a 2D NH(3) -O(2) flame, yielding interferograms containing information on the NH radical concentration distribution in the flame. Experimental results are quantified by application of a numerical computation of the complex refractive index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.