Abstract

Optical phase conjugation is a process where an incoming electromagnetic wave is reflected with a reversed phase. The propagation direction of an incoming beam (equivalently, local phase gradient) can thereby be precisely reversed by the phase conjugate beam. This intriguing effect, so called of electromagnetic waves, allows cancellation of spatial distortion introduced into the incoming beam. Recently, this concept has provided a new avenue to overcome or utilize random scattering in the field of biophotonics. This thesis discusses a number of interrelated topics regarding optical phase conjugation and its applications in biology. First, two examples of exploiting optical phase conjugation for light focusing are presented. The first example shows that the axial resolution can be improved based on the counter-propagating property of the phase-conjugate beam, and the second example demonstrates how the random scattering media can be used to enhance the flexibility in focusing range. We then discuss a new class of techniques that involves the use of guidestars in the phase conjugation process for deep tissue (> 1mm) light focusing and imaging. In the context of in vivo application, we model and estimate the penetration depth limit of one prominent example of this approach, time-reversed ultrasonically encoded (TRUE) optical focusing. Based on the analysis, we show that the iteration of phase conjugation operation can improve the contrast and resolution of the focal spot created inside deep tissue. We also present a new kind of guidestar-assisted method, time-reversed ultrasound microbubble encoded (TRUME) light focusing, which can focus light with sub-ultrasound wavelength resolution. At last, the effect of dynamic scatterers on time-reversal fidelity is studied to explore the possibility of applying the optical phase conjugation techniques in living tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call