Abstract

In this work, the substitution of Al3+ by Zr/Mg in Al2Mo3O12 was designed to enhance the quality factor while simultaneously adjusting the thermal stability of the resonant frequency. The Al2–2x(Zr0.5Mg0.5)2xMo3O12 (AMZM) (0.1 ≤ x ≤ 0.5) ceramics were synthesized using a simple solid-state method, resulting in all components exhibiting single-phase crystallinity and a dense structure. A phase transition temperature below room temperature was observed when x ≥ 0.4. Furthermore, the quality factor of the synthesized samples, compared to pure-phase Al2Mo3O12 (εr = 6.79, Q×f = 28471 GHz, τf = −48.77 ppm/℃), increased by nearly threefold. A detailed investigation of the crystal structure of the samples was conducted through Rietveld refinement. The composition with x = 0.3 (monoclinic phase) exhibited optimal dielectric performance after sintering at 800 ℃ for 6 h: εr = 7.84, Q×f = 86511 GHz, τf = −42.08 ppm/℃. By forming a composite ceramic with (Li1/2Sm1/2)MoO4, the negative τf value was further adjusted to near zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.