Abstract

Chalcogenides—alloys based on group-16 ‘chalcogen’ elements (sulfur, selenium, and tellurium) covalently bound to ‘network formers’ such as arsenic, germanium, antimony, and gallium—have a variety of technologically useful properties, including infrared transparency, high optical nonlinearity, photorefractivity and readily induced, reversible, non-volatile structural phase switching. Such phase-change materials are of enormous interest in the fields of plasmonics and nanophotonics. However, in such applications, the fact that some chalcogenides accrue plasmonic properties in the transition from an amorphous to a crystalline state, i.e., the real part of their relative permittivity becomes negative, has gone somewhat unnoticed. Indeed, one of the most commercially important chalcogenide compounds, germanium antimony telluride (Ge2:Sb2:Te5 or GST), which is widely used in rewritable optical and electronic data storage technologies, presents this behavior at wavelengths in the near-ultraviolet to visible spectral range. In this work, we show that the phase transition-induced emergence of plasmonic properties in the crystalline state can markedly change the optical properties of sub-wavelength-thickness, nanostructured GST films, allowing for the realization of non-volatile, reconfigurable (e.g., color-tunable) chalcogenide metasurfaces operating at visible frequencies and creating opportunities for developments in non-volatile optical memory, solid state displays and all-optical switching devices.

Highlights

  • 1234567890():,; 1234567890():,; Introduction Phase-change materials have had a significant role in the evolution of active plasmonic and photonic metamaterial technologies, delivering a variety of switchable, tunable, and reconfigurable optical functionalities through hybridization with plasmonic metal nanostructures[1,2,3,4,5]

  • We show that thin-film GST can be optically switched between amorphous and polycrystalline states, which are dielectric and metallic respectively at UV/VIS wavelengths, and demonstrate this switching in the context of photonic metasurfaces

  • Optically thick GST is an absorbing medium at ultraviolet/visible wavelengths with a dispersion of reflectivity that can be substantially modified by nano-grating metasurface structures, yielding vibrant plasmonic colors in the crystalline state when illuminated with light polarized perpendicular to the grating lines

Read more

Summary

Introduction

Phase-change materials have had a significant role in the evolution of active plasmonic and photonic metamaterial technologies, delivering a variety of switchable, tunable, and reconfigurable optical functionalities through hybridization with plasmonic metal nanostructures[1,2,3,4,5]. We show that thin-film GST can be optically switched between amorphous and polycrystalline states, which are dielectric and metallic (i.e., plasmonic) respectively at UV/VIS wavelengths, and demonstrate this switching in the context of photonic metasurfaces.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call