Abstract

We report extensive simulation studies of phase behavior in single component systems of particles interacting via a core-softened interparticle potential. Two recently proposed examples of such potentials are considered; one in which the hard core exhibits a shoulder [Sadr-Lahijany et al., Phys. Rev. Lett. 81, 4895 (1998)], and the other in which the softening takes the form of a linear ramp [Jagla, Phys. Rev. E 63, 061501 (2001)]. Using a combination of state-of-the-art Monte Carlo methods, we obtain the gas, liquid, and solid phase behavior of the shoulder model in two dimensions. We then focus on the thermodynamic anomalies of the liquid phase, namely, maxima in the density and compressibility as a function of temperature. Analysis of the finite-size behavior of these maxima suggests that, rather than stemming from a metastable liquid-liquid critical point, as previously supposed, they are actually induced by the quasicontinuous nature of the two dimensional freezing transition. For the ramp model in three dimensions, we confirm the existence of a stable liquid-liquid ("second") critical point occurring at higher pressure and lower temperature than the liquid-gas critical point. Both these critical points and portions of their associated coexistence curves are located to high precision. In contrast to the shoulder model, the observed thermodynamic anomalies of this model are found to be authentic, i.e., they are not engendered by an incipient new phase. We trace the locus of density and compressibility maxima, the former of which appears to terminate close to the second critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.