Abstract
Ionic liquids are promising media for self-assembling block copolymers in applications such as energy storage. A robust design of block copolymer formulations in ionic liquids requires fundamental knowledge of their self-organization at the nanoscale. To this end, here, we focus on modeling two-component systems comprising a Poly(ethylene oxide)-poly (propylene oxide)-Poly(ethylene oxide) (PEO-PPO-PEO) block copolymer (Pluronic P105: EO37PO58EO37) and room temperature ionic liquids (RTILs): protic ethylammonium nitrate (EAN), aprotic ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), or 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Rich structural polymorphism was exhibited, including phases of micellar (sphere) cubic, hexagonal (cylinder), bicontinuous cubic, and lamellar (bilayer) lyotropic liquid crystalline (LLC) ordered structures in addition to solution regions. The characteristic scales of the structural lengths were obtained using small-angle X-ray scattering (SAXS) data analysis. On the basis of phase behavior and structure, the effects of the ionic liquid solvent on block copolymer organization were assessed and contrasted to those of molecular solvents, such as water and formamide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.